Roll No. Total Pages: 04

8227

M.Sc. MATHEMATICS IIIRD SEMESTER EXAMINATION, 2019 Paper - VII INTEGRAL EQUATIONS

Time: Three Hours Maximum Marks: 80

PART – A (खण्ड – अ)

[Marks: 20]

Answer all questions (50 words each).

All questions carry equal marks.

सभी प्रश्न अनिवार्य हैं। प्रत्येक प्रश्न का उत्तर 50 शब्दों से अधिक न हो। सभी प्रश्नों के अंक समान हैं।

PART - B (खण्ड - ब)

[Marks: 40]

Answer five questions (250 words each).

Selecting one from each unit. All questions carry equal marks.

प्रत्येक इकाई से **एक-एक** प्रश्न चुनते हुए, कुल पाँच प्रश्न कीजिए। प्रत्येक प्रश्न का उत्तर 250 शब्दों से अधिक न हो।

सभी प्रश्नों के अंक समान हैं।

PART – C (खण्ड – स)

[Marks: 20]

Answer any two questions (300 words each).

All questions carry equal marks.

कोई **दो प्रश्न** कीजिए। प्रत्येक प्रश्न का उत्तर 300 शब्दों से अधिक न हो। सभी प्रश्नों के अंक समान हैं।

[8227]

PART - A

- Q.1 (i) Define an integral equation with an example.
 - (ii) Define Volterra's integral equation of second kind.
 - (iii) Define separable Kernel of Fradholm integral equation of second kind with an example.
 - (iv) Define Eigen value and Eigen function of homogeneous Fredholm integral equation.
 - (v) Find resolvent kernel of the Fredholm integral equation when iterated kernel is given by –

$$k_m(x,t) = e^{x+t} \left(\frac{e^2-1}{2}\right)^{m-1}, m = 1, 2, 3, ...$$

(vi) Find the second iterated kernel of the kernel –

$$k(x, t) = x - t, \quad a = 0, \quad b = 1$$

- (vii) Define symmetric kernel of the integral equation.
- (viii) Define proper orthogonal set.
- (ix) State the Hilbert-Schmidt Theorem.
- (x) Define Volterra's integral equation with convolution type kernel with an example.

PART – B

UNIT -I

Q.2 Obtain Fredholm integral equation of second kind corresponding to the boundary value problem –

$$\frac{d^2 y}{d x^2} + \lambda y = x$$
, $y(0) = 0$, $y(1) = 1$

Q.3 Prove that the homogeneous integral equation –

$$g(x) = \lambda \int_0^1 (3x - 2) g(t) dt$$

has no eigen values and eigen functions.

[8227]

UNIT -II

Q.4 Solve the homogeneous Fredholm integral equation of second kind with separable kernel.

$$g(x) = \lambda \int_0^{2\pi} \sin(x+t) g(t) dt$$

Q.5 Solve the Fredholm integral equation of second kind -

$$g(x) = x + \lambda \int_0^1 (x t^2 + x^2 t) g(t) dt$$

UNIT -III

Q.6 Using resolvent kernel method, solve –

$$g(x) = 1 + \lambda \int_0^1 e^{x-t} g(t) dt$$

Q.7 Using the method of successive approximations, solve the integral equation –

$$g(x) = 1 + \int_0^x (x - t) g(t) dt$$
, taking $g_0(x) = 0$.

UNIT -IV

- Q.8 If a kernel is symmetric, then prove that all its iterated kernels are also symmetric.
- Q.9 Describe the expansion of Eigen functions and Bilinear form of symmetric kernels.

UNIT -V

Q.10 Solve the symmetric integral equation –

$$g(x) = (x + 1)^2 + \int_{-1}^{1} (x t + x^2 t^2) g(t) dt$$

by using Hilbert – Schmidt theorem.

Q.11 Convert the Volterra's integral equation with convolution type kernels –

$$g(x) = 1 + \int_0^x \sin(x - t) g(t) dt$$

in convolution form and hence solve it.

[8227]

PART - C

Q.12 Reduce the initial value problem –

$$\frac{d^2 y}{d x^2} - \sin x \frac{dy}{dx} + e^x y = x$$

with the initial condition y(0) = 1, y'(0) = -1 to a Volterra's integral equation of second kind. Conversely, derive the original differential equation with the initial conditions from the integral equation obtained.

Q.13 Solve the integral equation –

$$g(x) = \cos 3x + \lambda \int_0^{\pi} \cos(x+t) g(t) dt$$

Discuss all the cases.

Q.14 Find the resolvent kernel of the kernel –

$$k(x, t) = \sin x \cos t, a = 0, b = \frac{\pi}{2}$$

- Q.15 Prove that the Eigen functions of a symmetric kernel, corresponding to distinct eigenvalues are orthogonal.
- Q.16 State the Fredholm's First Theorem and hence find the resolvent kernel of the kernel-

$$k(x, t) = xe^{t}$$
; $a = 0, b = 1$
